FEVER: Forest Vulnerability to Extreme and Repeated Climatic Stress

Context

The frequency and severity of heat events are increasing across Europe: by the end of the 21st century, countries in central Europe will experience the same number of hot days as are currently experienced in southern Europe. The summers of 2018 and 2019 included some of the hottest periods ever recorded and existing soil moisture measurements show unprecedented levels of soil drought across Switzerland.

The uncertainty of how forest trees react to increased temperatures and heat stress is also related to the fact that ecophysiological reactions vary across species, sites and regions, biome types, and prevailing climatic conditions, which makes their realization in land-atmosphere models challenging.

Project aims

To improve the understanding of forest-climate interactions, a multi-scale approach is needed, that is able to investigate the ecosystem as a whole, to be able to predict the degree to which the forest ecosystem is susceptible to adverse climatic stress impacts.

The project FEVER links physiological leaf, tree, and root processes with the ecosystem-level fluxes of water vapor, to understand the contribution of vegetation, and the direction in which forest-climate interactions will be affected by future changes in climate.

In particular, this project has four main objectives:

  1. To assess how trees regulate their water loss at the leaf level under drier conditions;
  2. To determine the contribution of canopy transpiration to the whole-forest energy and water fluxes;
  3. To identify where in the soil profile trees extract water from, and how trees adjust their uptake in response to declining soil moisture levels;
  4. To explore long-term changes in ecosystem water vapor fluxes in response to climatic stress using some of the longest set of eddy covariance measurements globally (since 1997).
Project substudies

Schematic representation of the project, which consists of four sub studies (SS). Work packages will be completed at a coniferous forest in Davos and a mixed deciduous forest in Lägeren. Both sites are part of a larger long-term forest monitoring network in Switzerland (external pageLWF), and a global network of eddy covariance measurement sites (external pageFLUXNET). Additionally, Davos is part of the Integrated Carbon Observation System network external pageICOS and a Class 1 candidate ecosystem site  

Publications

Gou R, Chi J, Liu J, Luo Y, Shekhar A, Mo L, Lin G (2024) Atmospheric water demand constrains net ecosystem production in subtropical mangrove forests. Journal of Hydrology 630: 130651, doi: external page10.1016/j.jhydrol.2024.130651

Zhao X, Chen J, Marshall J, Gałkowski M, Hachinger S, Dietrich F, Shekhar A, Gensheimer J, Wenzel A, Gerbig C (2023) Understanding greenhouse gas (GHG) column concentrations in Munich using the Weather Research and Forecasting (WRF) model. Atmospheric Chemistry and Physics 23: 14325-14347, doi: external page10.5194/acp-23-14325-2023

Gou R, Buchmann N, Chi J, Luo Y, Mo L, Shekhar A, Feigenwinter I, Hörtnagl L, Weizhi Lue, Xiaowei Cuif, Yuchen Menga, Shanshan Songa, Guangxuan Ling, Yuechao Cheng, Jie Liangh, Jiemin Guoi, Haijun Pengj, Guanghui Lin G (2023) Temporal variations of carbon and water fluxes in a subtropical mangrove forest: insights from a decade-long eddy covariance measurement. Agricultural and Forest Meteorology 343: 109764, doi: external page10.1016/j.agrformet.2023.109764

Dietrich F, Chen J, Shekhar A, Lober S, Krämer K, Leggett G, van der Veen C, Velzeboer I, Denier van der Gon H, Röckmann T (2023) Climate impact comparison of electric and gas-powered end-user appliances. Earth's Future 11: e2022EF002877, doi: external page10.1029/2022EF002877

Shekhar A, Hörtnagl L, Buchmann N, Gharun M (2023) Long-term changes in forest response to extreme atmospheric dryness. Global Change Biology 29: 5379-5396, doi: external page10.1111/gcb.16846

Xie M, Ma X, Wang Y, Li C, Shi H, Yuan X, Hellwich O, Chen C, Zhang W, Zhang C, Ling Q, Gao R, Zhang Y, Ochege FU, Frankl A, De Maeyer P, Buchmann N, Feigenwinter I, Olesen JE, Juszczak R, Jacotot A, Korrensalo A, Pitacco A, Varlagin A, Shekhar A, Lohila A, De Ligne A, Carrara A, Brut A, Kruijt B, Loubet B, Heinesch B, Chojnicki B, Helfter C, Vincke C, Shao C, Bernhofer C, Brümmer C, Wille C, Tuittila ES, Nemitz E, Meggio F, Dong G, Lanigan GJ, Niedrist G, Wohlfahrt G, Zhou G, Goded I, Gruenwald T, Olejnik J, Jansen J, Neirynck J, Tuovinen JP, Zhang J, Klumpp K, Pilegaard K, Šigut L, Klemedtsson L, Tezza L, Hörtnagl L, Urbaniak M, Roland M, Schmidt M, Sutton MA, Hehn M, Saunders M, Mauder M, Aurela M, Korkiakoski M, Du M, Vendrame N, Kowalska N, Leahy PG, Alekseychik P, Shi P, Weslien P, Chen S, Fares S, Friborg T, Tallec T, Kato T, Sachs T, Maximov T, Morra di Cella U, Moderow U, Li Y, He Y, Kosugi Y, Luo G (2023) Monitoring of carbon-water fluxes at Eurasian meteorological stations using random forest and remote sensing. Scientific Data 10: 587, doi: external page10.1038/s41597-023-02473-9

Haesen S, Lembrechts JJ, De Frenne P, Lenoir J, Aalto J, Ashcroft MB, Kopecký M, Luoto M, Maclean I, Nijs I, Niittynen P, van den Hoogen J, Arriga N, Brůna J, Buchmann N, Čiliak M, Collalti A, De Lombaerde E, Descombes P, Gharun M, Goded I, Govaert S, Greiser C, Grelle A, Gruening C, Hederová L, Hylander K, Kreyling J, Kruijt B, Macek M, Máliš F, Man M, Manca G, Matula R, Meeussen C, Merinero S, Minerbi S, Montagnani L, Muffler L, Ogaya R, Penuelas J, Plichta R, Portillo-Estrada M, Schmeddes J, Shekhar A, Spicher F, Ujházyová M, Vangansbeke P, Weigel R, Wild J, Zellweger F, Van Meerbeek K (2023) ForestClim—Bioclimatic variables for microclimate temperatures of European forests. Global Change Biology, doi: external page10.1111/gcb.16678

Lal P, Shekhar A, Gharun M, Das NN (2023) Spatiotemporal evolution of global long-term patterns of soil moisture. Science of the Total Environment 867: 161470, doi: external page10.1016/j.scitotenv.2023.161470

Shekhar A, Shapiro CA (2022) Prospective crop yield and income return based on a retrospective analysis of a long-term rainfed agriculture experiment in Nebraska. Agricultural Systems 198: 103384, doi: external page10.1016/j.agsy.2022.103384

Shekhar A, Buchmann N, Gharun M (2022) How well do recently reconstructed solar-induced fluorescence datasets model gross primary productivity? Remote Sensing of Environment 283: 113282, doi: external page10.1016/j.rse.2022.113282

Lembrechts JJ, …, Buchmann N, ..., Eugster W, …, Feigenwinter I, …, Gharun M, …, Hörtnagl L, ..., Maier R, …, Shekhar A, et al. (2022) Global maps of soil temperature. Global Change Biology 28: 3110-3144, doi: external page10.1111/gcb.16060

Lal P, Shekhar A, Kumar A (2021) Quantifying temperature and precipitation change caused by land cover change: A case study of India using the WRF model. Frontiers in Environmental Science 9: 766328, doi: external page10.3389/fenvs.2021.766328

Balamurugan V, Chen J, Qu Z, Bi X, Gensheimer J, Shekhar A, Bhattacharjee S, Keutsch FN (2021) Tropospheric NO2 and O3 response to COVID-19 lockdown restrictions at the national and urban scales in Germany. Journal of Geophysical Research: Atmospheres 126: e2021JD035440, doi: external page10.1029/2021JD035440

Gensheimer J, Turner AJ, Shekhar A, Wenzel A, Keutsch, FN, Chen J (2021) What are the different measures of mobility telling us about surface transportation CO2 emissions during the COVID-19 pandemic? Journal of Geophysical Research: Atmosphere 126: e2021JD034664, doi: external page10.1029/2021JD034664

Haesen S, Lembrechts JJ, De Frenne P, Aalto J, Ashcroft MB, Kopecký M, Lenoir J, Luoto M, Maclean I, Nijs I, Niittynen P, van den Hoogen J, Arriga N, Brůna J, Buchmann N, Čiliak M, Collalti A, De Lombaerde E, Gharun M, Goded I, Govaert S, Greiser C, Grelle A, Gruening C, Hederová L, Hylander K, Kreyling J, Kruijt B, Macek M, Máliš F, Man M, Manca G, Matula R, Meeussen C, Minerbi S, Montagnani L, Muffle L, Ogaya R, Penuelas J, Plichta R, Portillo-Estrada M, Schmeddes J, Shekhar A, Spicher F, Ujházyová M, Vangansbeke P, Weigel R, Wild J, Van Meerbeek K (2021) ForestTemp – sub-canopy microclimate temperatures of European forests. Global Change Biology 27: 6307-6319, doi: external page10.1111/gcb.15892

JavaScript has been disabled in your browser