SEON – Swiss Earth Observatory Network

Context

Ecosystem services such as water availability, food production or clean air are crucial for the livelihoods of humanity and are directly linked to economic activities further influencing human well-being. The continuous global population increase combined with rapid economic development lead to a more intense use of natural resources. Associated environmental changes have reached a new level during the last decade and lead to considerable changed in ecosystems and the atmosphere.

Objectives

The Swiss Earth Observatory Network (SEON) will combine a systematic monitoring of the environment at the ground and in the atmosphere with earth system science models in order to better understand the consequences of global change to ecosystem functioning and ecosystem states. One of the major long-term goals is a more reliable prediction of future changes across spatial and temporal scales.

The first flight campaigns have been done in May 2013. The first APEX quicklooks are posted on the external pageSEON homepage.

Publications

2018

  • Paul-Limoges E, Damm A, Hueni A, Liebisch F, Eugster W, Schaepmann M E, Buchmann N (2018) Effect of environmental conditions on sun-induced fluorescence in a mixed forest and a cropland. Remote Sensing of Environment 219: 310-323 doi: external page10.1016/j.rse.2018.10.018

2017

  • Braun D, Damm A, Paul-Limoges E, Revill A, Buchmann N, Petchey OL, Hein L, Schaepman ME (2017) From instantaneous to continuous: Using imaging spectroscopy and in situ data to map two productivity-related ecosystem services. Ecological Indicators 82: 409-419 doi: external page10.1016/j.ecolind.2017.06.045
  • Eugster E, Emmel C, Wolf S, Buchmann N, McFadden JP, Whiteman CD (2017) Effects of vernal equinox solar eclipse on temperatures and wind directions in Switzerland. Atmospheric Chemistry and Physics 17: 14887–14904 doi: external page10.5194/acp-17-14887-2017
  • Feichtinger LM, Siegwolf R, Gessler A, Buchmann N, Lévesque M, Rigling A (2017) Plasticity in gas-exchange physiology of mature Scots pine and European larch drive short- and long-term adjustments to changes in water availability. Plant, Cell & Environment 40: 1972 –1983 doi: external page10.1111/pce.13008
  • Gonsamo A, D’Odorico P, Chen J M, Wu C, Buchmann N (2017) Changes in vegetation phenology are not reflected in atmospheric CO2 and 13C/12C seasonality. Global Change Biology 23: 4029–4044 doi: external page10.1111/gcb.13646
  • Gottselig N, Amelung W, Kirchner J, Bol R, Eugster W, Granger S.J, Hernández-Crespo C, Herrmann F, Keizer J J, Korkiakoski M, Laudon H, Lehner I, Löfgren S, Lohila A, Macleod C J A, Mölder M, Müller C, Nasta P, Nischwitz V, Paul-Limoges E, Pierret M C, Pilegaard K, Romano N, Sebastia M T, Siemens J, Stähli M, Voltz M, Vereecken H, Klumpp E (2017) Natural nanoparticles and colloids in European forest stream waters and their role as phosphorus carriers. Global Biogeochemical Cycles 31: 1592–1607 external pagehttp://onlinelibrary.wiley.com/doi/10.1002/2017GB005657/full
  • Paul-Limo­ges E, Wolf S, Eu­g­ster W, Hört­nagl L, Buch­mann N (2017) Be­low canopy con­tri­bu­tions to ecosys­tem CO2 fluxes in a tem­per­ate mixed for­est in Switzer­land. Agri­cul­tural and For­est Me­te­o­rol­ogy 247: 582-596 doi: external page10.1016/j.​agr​form​et.2017.08.011
  • Soll­berger S, Wehrli B, Schu­bert C J, Del­Son­tro T, Eu­g­ster W (2017) Mi­nor methane emis­sions from Alpine hy­dropower reser­voir based on mon­i­tor­ing of diel and sea­sonal vari­abil­ity. The Royal So­ci­ety of Chem­istry 19: 1278-1291 doi: external page10.1039/c7em00232g
  • Tan Z , Zhuang Q, Shur­pali N J, Marushchak M E, Bi­asi C, Eu­g­ster W, Wal­ter An­thony K (2017) Mod­el­ing CO2 emis­sions from Arc­tic lakes: Model de­vel­op­ment and site-level study. Jour­nal of Ad­vances in Mod­el­ing Earth Sys­tems 9, 5: 2190-2213 doi: external page10.1002/2017M­S001028

2015

Damm A, Guanter L, Paul-Limoges E, van der Tol C, Hueni A, Buchmann N, Eugster W, Ammann C, Schaepman ME (2015) Far-red sun-induced chlorophyll fluorescence shows ecosystem-specific relationships to gross primary production: An assessment based on observational and modeling approaches. Remote Sensing of Environment 166: 91-105 doi:external page10.1016/j.rse.2015.06.004

Schaepman ME, Jehle M, Hueni A, D’Odorico P, Weyermann A, Schneider J, Fabian D, Laurent  V, Popp C, Seidel FC, Lenhard K, Gege P, Küchler C, Brazile J, Kohler P, Vos L, Meuleman K, Meynart R, Schläpfer D, et al. (2015) Advanced radiometry measurements and Earth science applications with the Airborne Prism Experiment (APEX). Remote Sensing of Environment 158: 207-219 doi:external page10.1016/j.rse.2014.11.014

2014

Guanter L, Zhang Y, Jung M, Joiner J, Voigt M, Berry JA, Frankenberg C, Huete A, Zarco-Tejada P, Lee J-E, Moran S, Ponce-Campos G, Beer C, Camps-Valls G, Buchmann N, Gianelle D, Klumpp K, Cescatti A, Baker JM, Griffis TJ (2014) Accurate, global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. PNAS 111: E1327-E1333 doi:external page10.1073/pnas.1320008111

Guanter L, Zhang Y, Jung M, Joiner J, Voigt M, Berry JA, Frankenberg C, Huete A, Zarco-Tejada P, Lee J-E, Moran S, Ponce-Campos G, Beer C, Camps-Valls G, Buchmann N, Gianelle D, Klumpp K, Cescatti A, Baker JM, Griffis TJ (2014) Reply to Magnani et al. - Linking large-scale chlorophyll fluorescence observations with cropland gross primary production. PNAS 111: E2511 doi:external page10.1073/pnas.1406996111

JavaScript has been disabled in your browser